Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Supramolecular aggregation of two hydroxycarboxylic acid derivatives

C. Foces-Foces, ${ }^{\text {a }}{ }^{*}$ M. L. Rodríguez, ${ }^{\text {b }}$ M. Febles, ${ }^{\text {b }}$ C. Pérez ${ }^{\text {b }}$ and J. D. Martín ${ }^{\text {c }}$

${ }^{\text {a }}$ Instituto Rocasolano, CSIC, Departamento de Cristalografía, Serrano 119, E-28006 Madrid, Spain, ${ }^{\text {b }}$ Instituto de Bioorgánica, Universidad de La Laguna-CSIC, Avenida Astrofísico Fco. Sánchez 2, E-38206 La Laguna, Tenerife, Spain, and ${ }^{\text {c }}$ Instituto de Investigaciones Químicas, CSIC, Américo Vespucio s/n, Isla de la Cartuja, E-41092 Sevilla, Spain
Correspondence e-mail: cfoces@iqfr.csic.es
Received 28 February 2005
Accepted 1 April 2005
Online 30 April 2005
The crystal structures of 7,7-dicyclobutyl-5-hydroxymethyl-6-oxabicyclo[3.2.1]octane-1-carboxylic acid, $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}$, (I), and 1-(hydroxymethyl)-7-oxaspiro[bicyclo[3.2.1] octane-6,1'-cyclo-pentane]-5-carboxylic acid, $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}$, (II), determined at 170 K , show that the conformation of the hydroxymethyl group (anti or gauche) affects the dimensionality (one- or twodimensional) of the supramolecular structures via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. In (I), the carboxyl and hydroxymethyl groups interact with themselves, forming a one-dimensional step-ladder, while in (II), a two-dimensional structure is made up of carboxylic acid centrosymmetric $R_{2}^{2}(8)$ dimers connected by hydroxyl-to-ether contacts.

Comment

We have reported that compounds possessing axially oriented hydroxyl/carboxylic acid functions might create, by incorporation of water molecules, three-dimensional tubular structures in the crystalline state. Compounds (I) and (II) were considered to be promising candidates, since their respective homologues, (III) and (IV), have been shown to adopt hydrated tubular structures in the solid state (Carrasco et al., 2001). The crystal structures of compounds (I) and (II), reported in this paper, reveal a lack of hydration water molecules, although they were crystallized in a water-saturated atmosphere. To date, compound (IV) is the only one of this series which crystallizes in the anhydrous and hydrated forms in the absence or presence of a water atmosphere, respectively.

The molecular structures of compounds (I) and (II) are displayed in Figs. 1 and 2, respectively. In (I), the cyclobutane rings are puckered (Table 1), with dihedral angles of 26.1 (2) (C13/C10/C11 and C11/C12/C13 planes) and 31.7 (1) ${ }^{\circ}$ (C15/ C14/C17 and C15/C16/C17 planes). In both compounds, the oxolane ring presents a distorted ${ }^{4} T_{5}$ half-chair toward an E_{5} envelope conformation, according to the puckering parameters (Cremer \& Pople, 1975) and the notation of Giaco-
vazzo et al. (1992) for the C1-O1-C9-C5-C6 sequence [$\varphi_{2}=$ $-50.1(2)$ and $\left.-51.7(1)^{\circ}\right]$. The cyclohexane presents a distorted ${ }^{1} C_{4}$ towards ${ }^{1} E$ conformation [C6-C1-C2-C3-C4$\mathrm{C} 5 ; \varphi=0.4$ (3) and $1.8(3)^{\circ}$, and $\theta=27.0(3)$ and $\left.23.8(1)^{\circ}\right]$.

(I)

(III)

(V)

(II)

(IV)

(VI)

The molecules of (II) exhibit positional disorder of the cyclopentane ring and of the carboxylic acid group (Fig. 2). The cyclopentane ring adopts two conformations, namely ${ }^{5} T_{4}$ and ${ }^{5} E$ for molecules $A\left[\varphi_{2}=133.3(6)^{\circ}\right]$, and between ${ }^{5} T_{1}$ and E_{1} for molecules $B\left[\varphi_{2}=173.9(11)^{\circ}\right]$, for the $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11 A$ or $\mathrm{C} 11 B-\mathrm{C} 12-\mathrm{C} 13$ sequences. In the carboxylic acid group, the $\mathrm{C}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angle are significantly different from those in (I) (Tables 1 and 3), although they are in good agreement with the values previously reported for the disordered group (Carrasco et al., 2001).

The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding motifs may be described as double-strand ladders in (I) and as sheets in (II) (Figs. 3 and 4), which are closely related to the anti and gauche conformations of the hydroxyl group with respect to the oxolane bridge (Tables 1 and 3). As observed previously (Carrasco et al., 2001), the anti conformation gives one-dimensional assemblies, while a gauche conformation gives either one- or two-dimensional assemblies.

Figure 1

The molecular structure of (I), shown with 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii.

The supramolecular structure in (I) also differs from that in (II), in the absence of the centrosymmetric $R_{2}^{2}(8)$ motif (Tables 2 and 4). In (I), the carboxylic acid group acts as both a donor to the hydroxyl group, forming strands, and as an acceptor, joining two strands into a step-ladder structure

Figure 2
The molecular structure of (II), shown with 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii. The disorder model in the cyclopentane ring and in the carboxylic acid group is represented by dashed lines.

Figure 3
The one-dimensional hydrogen-bonded step-ladders in (I), formed by hydroxyl-to-hydroxyl/carbonyl bonds (dotted lines). H atoms not involved in the hydrogen bonds have been omitted for clarity. [Symmetry codes: (i) $x-1,1+y, z$; (ii) $1-x,-y,-z$.]

Figure 4

The two-dimensional hydrogen-bonded layer in (II), formed by moleccles joined via a combination of acid-to-acid and hydroxyl-to-ether hydrogen bonds (dotted lines). H atoms not involved in the hydrogen bonds and the minor component of the disordered carboxylic acid group have been omitted for clarity. [Symmetry codes: (i) $1-x, 1-y,-z$; (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $x, 1+y, z$; (iv) $1-x, 2-y,-z$; (v) $1+x, \frac{3}{2}-y,-\frac{1}{2}+z$.]
(Nguyen et al., 2001) of alternating $R_{2}^{2}(16)$ and $R_{4}^{4}(12)$ motifs. Each strand (Fig. 3) contains only one enantiomer, related only by translation, whereas the step-ladder is formed by one strand of one handedness and one strand of opposite handedness, giving rise to an achiral ladder. A similar supramolecular structure is present in the anhydrous form of compound (IV) and in the homologues (V) and (VI) (Carrasco et al., 2001), which have two fewer C atoms. No other weak interactions, except van der Wails interactions, are observed between ladders (Fig. 5).

In compound (II), the H -atom disorder does not affect the supramolecular structure, since the carboxylic acid group interacts strongly with itself, forming the acid-to-acid hydrogen-bonding $R_{2}^{2}(8)$ motif (Leiserowitz, 1976; Etter, 1990; Bernstein et al., 1995). This dimeric association, linked by hydroxyl-to-ether hydrogen bonds, results in sheets (Fig. 4) that are further joined via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions into a threedimensional network (see Table 4 and the dashed lines in Fig. 6). The formation of the $R_{2}^{2}(8)$ motif is prevented in the related analogues with two-dimensional structures (Carrasco et al., 2001).

Figure 5
A packing diagram for (I), illustrating the disposition of two ladders running along [$\overline{1} 10]$. H atoms not involved in hydrogen bonds have been omitted for clarity.

Figure 6
A packing diagram for (II), illustrating the disposition of the sheets. C$\mathrm{H} \cdots \mathrm{O}$ interactions (dashed lines) link the sheets into a three-dimensional network. H atoms not involved in hydrogen bonds and the minor component of the disordered carboxylic acid group have been omitted for clarity.

Comparison with the previously reported hydroxy-acid analogues confirms that the relative positions of the hydroxyl and carboxylic acid groups, together with the molecular size, can lead to a range of hydrogen-bonded supramolecular structures with various dimensionalities. The reliability of the axially oriented hydroxyl/carboxylic acid functions in giving anhydrous layers reduces the design of the last remaining dimension to the incorporation of water molecules.

Experimental

Compounds (I) and (II) were synthesized by condensing the dilithium salt of 3-methylenecyclohexanecarboxylic acid with, respectively, dicyclobutylmethanone (Erickson et al., 1966) and cyclopentanone, following the synthetic sequence reported for the other members of this family of compounds (Carrasco et al., 2001). Analysis for compound (I): m.p. 448-449 K; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$): δ $3.67(d, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(d, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(m, 1 \mathrm{H}), 2.61$ $(m, 1 \mathrm{H}), 2.47(d, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(m, 3 \mathrm{H}), 2.12(m, 2 \mathrm{H}), 1.99(m$, $3 \mathrm{H}), 1.74(m, 8 \mathrm{H}), 1.58(m, 2 \mathrm{H}), 1.40(d, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz, MeOD): $\delta 17.7,18.1,19.5,26.2,26.7,27.4,31.9,32.8,40.4$, $41.1,44.6,47.6,56.9,67.3,82.4,86.4,176.2$; IR ($\mathrm{KBr}, \nu_{\max }, \mathrm{cm}^{-1}$): 3398, 2950, 2363, 1701, 1651, 1540, 1458, 1251, 1167, 1123, 995. Analysis for compound (II): m.p. $426-427 \mathrm{~K}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 3.48$ $(d, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(d, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(d, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20(m, 2 \mathrm{H}), 1.95(m, 2 \mathrm{H}), 1.73(m, 5 \mathrm{H}), 1.59(d, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.50$ $(m, 4 \mathrm{H}), 1.40\left(d d, J_{1}=12.4, J_{2}=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $(75.4 \mathrm{MHz}$, MeOD): $\delta 19.7,24.1,24.5,31.7,31.8,32.0,39.2,40.6,55.6,66.4,82.3$, 94.1, 176.0; IR (KBr, $\nu_{\text {max }}, \mathrm{cm}^{-1}$): 3749, 3380, 2956, 2870, 2361, 2337, $1703,1456,1339,1257,1157,1046,1002$. Single crystals of (I) and (II) suitable for X-ray analysis were grown at room temperature from a damp carbon tetrachloride-2,2,4-trimethylpentane mixture (3:1).

Compound (I)

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}$
$M_{r}=294.38$
Triclinic, $P \overline{1}$
$a=8.757$ (3) \AA
$b=8.807$ (3) \AA
$c=11.769$ (6) \AA
$\alpha=84.073(11)^{\circ}$
$\beta=75.766(13)^{\circ}$
$\gamma=61.044(9)^{\circ}$
$V=769.7(5) \AA^{3}$
Data collection
Nonius KappaCCD area-detector diffractometer
φ and ω scans
3531 measured reflections
3531 independent reflections 3087 reflections with $I>2 \sigma(I)$
$Z=2$
$D_{x}=1.270 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3531 reflections
$\theta=1.8-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=170(2) \mathrm{K}$
Prism, colourless
$0.45 \times 0.10 \times 0.10 \mathrm{~mm}$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 11$
$k=-9 \rightarrow 11$
$l=-14 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.176$
$S=1.03$
3531 reflections
191 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

$\mathrm{O} 3-\mathrm{C} 7$	$1.209(2)$	$\mathrm{O} 4-\mathrm{C} 7$	$1.318(2)$
O3-C7-C5	$123.5(2)$	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 5$	$113.1(1)$
O1-C1-C8-O2	$-179.8(1)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 14-\mathrm{C} 15$	$59.9(2)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-156.9(1)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 14-\mathrm{C} 17$	$-49.1(2)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 13$	$-47.6(2)$	$\mathrm{C} 17-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$-22.2(1)$
C13-C10-C11-C12	$18.3(1)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$22.4(1)$
C10-C11-C12-C13	$-18.4(1)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 14$	$-22.4(1)$
C11-C12-C13-C10	$18.4(1)$	C15-C14-C17-C16	$22.2(1)$
C11-C10-C13-C12	$-18.3(1)$		

Table 2
Hydrogen-bond geometry ($\left(\AA,{ }^{\circ}\right.$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.84	1.96	$2.718(2)$	149
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{ii}}$	0.84	1.78	$2.585(2)$	159

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x-1, y+1, z$.

Compound (II)

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}$
$M_{r}=240.29$
Monoclinic, $P 2_{1} / c$
$a=10.850$ (3) \AA
$b=7.050$ (2) \AA
$c=15.790(5) \AA$
$\beta=94.207(10)^{\circ}$
$V=1204.6$ (6) \AA^{3}
$Z=4$
Data collection
Nonius KappaCCD diffractometer
φ and ω scans
2589 measured reflections
2589 independent reflections
2377 reflections with $I>2 \sigma(I)$
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.154$
$S=1.05$
2589 reflections
169 parameters
H -atom parameters constrained
$\theta_{\text {max }}=27.0^{\circ}$
$h=0 \rightarrow 13$
$k=0 \rightarrow 8$
$l=-20 \rightarrow 20$
$D_{x}=1.325 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2589
reflections
$\theta=1.9-27.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=170$ (2) K
Sphere, colourless
$0.50 \times 0.50 \times 0.45 \mathrm{~mm}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.111 P)^{2}\right. \\
& \quad \quad+0.2862 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL } 97 \\
& \quad \text { (Sheldrick, } 1997) \\
& \text { Extinction coefficient: } 0.20 \text { (2) }
\end{aligned}
$$

Table 3
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (II).

$\mathrm{O} 3-\mathrm{C} 7$	$1.257(2)$	$\mathrm{O} 4-\mathrm{C} 7$	$1.275(2)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 5$			
	$118.7(1)$	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 5$	$118.4(1)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 8-\mathrm{O} 2$	$72.76(12)$	$\mathrm{C} 11 A-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 9$	$44.3(4)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11 A$	$-95.2(4)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 13-\mathrm{C} 12$	$-39.2(1)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11 B$	$-77.2(5)$	$\mathrm{C} 13-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11 B$	$36.9(5)$
$\mathrm{C} 13-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11 A$	$18.8(5)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11 B-\mathrm{C} 12$	$-20.1(8)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11 A-\mathrm{C} 12$	$8.4(7)$	$\mathrm{C} 10-\mathrm{C} 118-\mathrm{C} 12-\mathrm{C} 13$	$-4.3(8)$
$\mathrm{C} 10-\mathrm{C} 11 A-\mathrm{C} 12-\mathrm{C} 13$	$-32.3(6)$	$\mathrm{C} 11 B-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 9$	$27.0(5)$

Table 4
Hydrogen-bond geometry ($\AA{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {i }}$	0.84	1.96	2.790 (1)	170
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 4^{\text {ii }}$	0.84	1.83	2.636 (2)	162
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 3^{\text {ii }}$	0.84	1.80	2.636 (2)	171
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{D} \cdots \mathrm{O} 3^{\mathrm{iii}}$	0.99	2.60	3.561 (2)	163

All H atoms were located in difference Fourier maps and subsequently allowed to refine as riding, with $\mathrm{C}-\mathrm{H}=0.99\left(\mathrm{CH}_{2}\right)$ or $1.00 \AA$ (CH) and $\mathrm{O}-\mathrm{H}=0.84 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$. The molecules of (II) exhibit positional disorder in the carboxylic acid H atom $[\mathrm{pp}(\mathrm{H} 4)=0.59(3)$ and $\mathrm{pp}(\mathrm{H} 3)=0.41(3)]$ and in the cyclopentane ring $[\mathrm{pp}(\mathrm{C} 11 A)=0.58(2)$ and $\mathrm{pp}(\mathrm{C} 11 B)=0.42(2)]$. The bond distances around the disordered atoms $\mathrm{C} 11 A / B$ in the cyclopentane ring were restrained using the DFIX command based on the average $\mathrm{Csp}^{3}-\mathrm{Csp}^{3}$ value (Allen et al., 1987). Attempted free refinement led to unrealistic geometrical parameters.

For both compounds, data collection: KappaCCD Server Software (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK; structure solution: SIR97 (Altomare et al., 1999); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal3.6 (Hall et al., 1999) and PLATON (Spek, 2003); publication software: SHELXL97, WinGX (Farrugia, 1999) and PLATON.

Financial support from the DGICYT of Spain (grant No. CTQ2004-01674) is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TR1124). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Carrasco, H., Foces-Foces, C., Pérez, C., Rodríguez, M. L. \& Martín, J. D. (2001). J. Am. Chem. Soc. 123, 11970-11981.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Erickson, J. L. E., Collins, F. E. \& Owen, B. L. (1966). J. Org. Chem. 31, 480484.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Giacovazzo, C., Monaco, H. L., Viterbo, D., Scodari, F., Gilli, G., Zanotti, G. \& Catti, M. (1992). Fundamentals of Crystallography, edited by C. Giacovazzo, pp. 492-499. International Union of Crystallography and Oxford University Press.
Hall, S. R., du Boulay, D. J. \& Olthof-Hazekamp, R. (1999). Editors. Xtal3. 6 User's Manual. The University of Western Australia: Lamb, Perth.
Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
Nguyen, V. T., Ahn, P. D., Bishop, R., Scudder, M. L. \& Craig, D. C. (2001). Eur. J. Org. Chem. pp. 4489-4499.
Nonius (2000). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

